Math 102

Last time

- Course Logistics (Administrative)

Last time

- Course Logistics (Administrative)
 - Power Functions

$$
f(x)=a x^{n}
$$

Last time

- Course Logistics (Administrative)
- Power Functions

$$
f(x)=a x^{n}
$$

- Example: Cell size model r^{2} (surface area) vs. r^{3} (volume)

Last time

- Course Logistics (Administrative)
- Power Functions

$$
f(x)=a x^{n}
$$

- Example: Cell size model r^{2} (surface area) vs. r^{3} (volume)
- Sketching the graph of simple polynomials:

Last time

- Course Logistics (Administrative)
- Power Functions

$$
f(x)=a x^{n}
$$

- Example: Cell size model r^{2} (surface area) vs. r^{3} (volume)
- Sketching the graph of simple polynomials:
- Use relative behavior at 0 and ∞.
- Even or odd?
- Calculate zeroes if possible.

Just kidding!

Welcome to Math 102!

About myself

- My name is Krishanu Sankar. I am a postdoc in the math department, and am your instructor this semester.

About myself

- My name is Krishanu Sankar. I am a postdoc in the math department, and am your instructor this semester.
- You can call me...

Good	Bad
Krishanu	Bro
Dr. Sankar	K-Dawg
Professor	Dude
etc.	etc.

Contact: ksankar@math.ubc.ca

Lecture Policies

- Mathematics is not a spectator sport. Lecture will be interactive with occasional exercises. Bring something to write on. Working with your neighbors is encouraged!

Lecture Policies

- Mathematics is not a spectator sport. Lecture will be interactive with occasional exercises. Bring something to write on. Working with your neighbors is encouraged!
- Lecture starts at 9:30. If you are late, try to enter with minimal distraction.

Lecture Policies

- Mathematics is not a spectator sport. Lecture will be interactive with occasional exercises. Bring something to write on. Working with your neighbors is encouraged!
- Lecture starts at 9:30. If you are late, try to enter with minimal distraction.
- Screens are distracting! If you use a laptop or phone, please sit towards the back of the room.

Lecture Policies

- Mathematics is not a spectator sport. Lecture will be interactive with occasional exercises. Bring something to write on. Working with your neighbors is encouraged!
- Lecture starts at 9:30. If you are late, try to enter with minimal distraction.
- Screens are distracting! If you use a laptop or phone, please sit towards the back of the room.
- Note: Lecture participation is not mandatory! I would rather you get some extra sleep, instead of playing games on your phone.

Differential Calculus - rates of change

- Limits and derivatives.
- Use to analyze functions.
- Model a variety of real-life situations.

Differential Calculus - rates of change

- Limits and derivatives.
- Use to analyze functions.
- Model a variety of real-life situations.
- You will apply these tools to solve problems.

Differential Calculus - rates of change

- Limits and derivatives.
- Use to analyze functions.
- Model a variety of real-life situations.
- You will apply these tools to solve problems.
- You'll learn to utilize technology (graphing tools, spreadsheets) to aid in calculations.

Differential Calculus - rates of change

- Limits and derivatives.
- Use to analyze functions.
- Model a variety of real-life situations.
- You will apply these tools to solve problems.
- You'll learn to utilize technology (graphing tools, spreadsheets) to aid in calculations.
- You will also be required to communicate ideas clearly and effectively.

Math 102: Resources

- Course website:
https://canvas.ubc.ca/courses/6219

Math 102: Resources

- Course website:
https://canvas.ubc.ca/courses/6219
- Course textbook (available free online)
- Pre-Lecture Videos

Math 102: Resources

- Course website:
https://canvas.ubc.ca/courses/6219
- Course textbook (available free online)
- Pre-Lecture Videos
- Office Hours: Provisionally Wednesday and Thursday, 12:30 to 2:00 in LSK 300

Math 102: Resources

- Course website:
https://canvas.ubc.ca/courses/6219
- Course textbook (available free online)
- Pre-Lecture Videos
- Office Hours: Provisionally Wednesday and Thursday, 12:30 to 2:00 in LSK 300
- Math Learning Center in LSK 301/302 https://www.math.ubc.ca/~MLC/

Math 102: Resources

- Course website:
https://canvas.ubc.ca/courses/6219
- Course textbook (available free online)
- Pre-Lecture Videos
- Office Hours: Provisionally Wednesday and Thursday, 12:30 to 2:00 in LSK 300
- Math Learning Center in LSK 301/302 https://www.math.ubc.ca/~MLC/
- Piazza (see link on Canvas)

Assignments and Grading

- WeBWorK (online, $3 x /$ week) - 15\%
- Pre-lecture WW 2x/week - about 30 minutes
- Main WW 1x/week - a few hours

Assignments and Grading

- WeBWorK (online, $3 x /$ week) - 15\%
- Pre-lecture WW 2x/week - about 30 minutes
- Main WW 1x/week - a few hours
- Old-School Homework (written, 6 total) - 20\%

Assignments and Grading

- WeBWorK (online, $3 x /$ week) - 15\%
- Pre-lecture WW 2x/week - about 30 minutes
- Main WW 1x/week - a few hours
- Old-School Homework (written, 6 total) - 20\%
- Midterm (October 25) - 15\%

Assignments and Grading

- WeBWorK (online, $3 x /$ week) - 15%
- Pre-lecture WW 2x/week - about 30 minutes
- Main WW 1x/week - a few hours
- Old-School Homework (written, 6 total) - 20\%
- Midterm (October 25) - 15\%
- Final exam (Date TBD) - 50\% (You must score at least 44% on the final exam to pass the course)

Homework Policies

- You may collaborate on homework, but any work you submit must be your own.

Homework Policies

- You may collaborate on homework, but any work you submit must be your own.
- Everyone's WW scores will be automatically bumped up by 5% at the end of the semester. (to a maximum of 100%)

Homework Policies

- You may collaborate on homework, but any work you submit must be your own.
- Everyone's WW scores will be automatically bumped up by 5% at the end of the semester. (to a maximum of 100%)
- No late homework will be accepted. Plan ahead!

Homework Policies

- You may collaborate on homework, but any work you submit must be your own.
- Everyone's WW scores will be automatically bumped up by 5% at the end of the semester. (to a maximum of 100%)
- No late homework will be accepted. Plan ahead!
- Any regrade requests must be given in writing using the form on the course webpage.

Typical Math 102 Week

- Monday: Pre-lecture WeBWorK due
- Tuesday 9:30-11: Lecture
- Wednesday: Pre-lecture WeBWorK due
- Thursday 9:30-11: Lecture
- Thursday: WeBWork due
- (Every other Friday: OSH due)

Reminders

- All questions regarding registration or sectioning should be directed to Mark MacLean or Margaret Ness.
- Reminder:
https://canvas.ubc.ca/courses/6219
- Don't panic. Within a week, this will feel less overwhelming.

Power Functions

- A function of the form $f(x)=a x^{n}$ (where a is a constant and n is a positive integer) is called a power function. For example,

Power Function	Not a Power Function
x^{2}	$\sqrt{x}=x^{1 / 2}$
πx^{100}	$1 / x$
$3 x$	2^{x}

Power Functions

- A function of the form $f(x)=a x^{n}$ (where a is a constant and n is a positive integer) is called a power function. For example,

Power Function	Not a Power Function
x^{2}	$\sqrt{x}=x^{1 / 2}$
πx^{100}	$1 / x$
$3 x$	2^{x}

- Goals
- Relative behavior as $x \rightarrow 0$ or $x \rightarrow \infty$
- Calculating intersection points of power functions
- Interpret results verbally, examples in nature

Example - Why are cells so small?

$\sim 100 \mathrm{~mm}$

$\sim 1 \mathrm{~mm}$

~.01mm
https://en.wikipedia.org/wiki/White_blood_cell/media/File:SEM_blood_cells.jpg

- WBCs are 12-15 microns in diameter.
- Cells absorb nutrients through their surface, and use the nutrients in their interior. Must have nutrient absorption rate \geq consumption rate, or the cell dies!
- Cells absorb nutrients through their surface, and use the nutrients in their interior. Must have nutrient absorption rate \geq consumption rate, or the cell dies!
- Mathematical model: assume the cell is spherical, and
- Cells absorb nutrients through their surface, and use the nutrients in their interior. Must have nutrient absorption rate \geq consumption rate, or the cell dies!
- Mathematical model: assume the cell is spherical, and

1. Absorption rate is proportional to surface area.
2. Consumption rate is proportional to volume.

Example - Spherical Cells

$$
A(r)=4 \pi k_{1} r^{2} \quad C(r)=\frac{4}{3} \pi k_{2} r^{3}
$$

Question: Which of the following is true?
A. Absorption is greater than consumption for very large r and vice versa for small r.
B. Consumption is greater than absorption for very large r and vice versa for small r.
C. Both A and B are possible, depending on k_{1} and k_{2}.

Asymptotic Behavior

- https://www.desmos.com/calculator/ xrbtlbd8pk
- https://www.desmos.com/calculator/ jzmjz1951u
- Example: Calculating the intersection of two power functions, in a specific case and also in general.

Example - Spherical Cells

In order for the cell to not starve, must have absorption \geq consumption

$$
A(r) \geq C(r)
$$

Example - Spherical Cells

In order for the cell to not starve, must have absorption \geq consumption

$$
\begin{aligned}
A(r) & \geq C(r) \\
\Longrightarrow 4 \pi k_{1} r^{2} & \geq \frac{4}{3} \pi k_{2} r^{3}
\end{aligned}
$$

Example - Spherical Cells

In order for the cell to not starve, must have absorption \geq consumption

$$
\begin{aligned}
A(r) & \geq C(r) \\
\Longrightarrow 4 \pi k_{1} r^{2} & \geq \frac{4}{3} \pi k_{2} r^{3}
\end{aligned}
$$

Equality occurs when $r=\frac{3 k_{1}}{k_{2}}$. And we know that the inequality is true for small r and false for big r.

Example - Spherical Cells

In order for the cell to not starve, must have absorption \geq consumption

$$
\begin{aligned}
A(r) & \geq C(r) \\
\Longrightarrow 4 \pi k_{1} r^{2} & \geq \frac{4}{3} \pi k_{2} r^{3}
\end{aligned}
$$

Equality occurs when $r=\frac{3 k_{1}}{k_{2}}$. And we know that the inequality is true for small r and false for big r.
Therefore, $r \leq \frac{3 k_{1}}{k_{2}}$.

Two other examples

Leg thickness relative to body size. Mass is proportional to volume, muscle strength is proportional to cross-sectional area.

Giant arthropods in the Carboniferous era - high atmospheric oxygen.

Graph Sketching

General Question: Given an equation $y=f(x)$, how can we graph it in the $x-y$ plane?

Graph Sketching

General Question: Given an equation $y=f(x)$, how can we graph it in the $x-y$ plane?
Goals:

- Sketch power functions, identify even/odd functions.
- Learn to sketch graphs of simple polynomials such as $y=a x^{m}+b x^{n}$.
- Learn to sketch graphs of simple rational functions such as $y=\frac{a x^{m}+b x^{n}}{c x^{k}+d x^{\ell}}$.
- Gain intuition about how these simple functions behave.

Even and Odd Power Functions

When degree is even: symmetry across the y-axis.

When degree is odd: symmetry through the origin.

Even? Odd?

Even? Odd?

Neither! $y=x^{2}-x$

Both! $y=0$

Odd! $y=x^{5}-x^{3}$

Neither! $y=e^{x}$

Even functions - Algebraically

- A function $f(x)$ is even if $f(-x)=f(x)$ for all x.

- (To be done on board) Show that the function $f(x)=x^{4}-x^{2}$ is even.

Odd functions - Algebraically

- A function $f(x)$ is odd if $f(-x)=-f(x)$ for all x.

- Exercise: Show that the function $f(x)=x^{3}-\frac{1}{x}$ is odd.

Example: Sketching $y=x^{3}-x$

To be done on board.

Exercise: Sketching $y=x^{3}+x^{2}$

To be done as an exercise.

More general: Sketching $a x^{3}+b x^{2}$

To be done on board if time available.

Recap

- Power Functions
- Cell growth model
- Sketching graphs:
- Use relative behavior at 0 and ∞.
- Even or odd?
- Calculate zeroes.

Recap

- Power Functions
- Cell growth model
- Sketching graphs:
- Use relative behavior at 0 and ∞.
- Even or odd?
- Calculate zeroes.
- https://canvas.ubc.ca/courses/6219. See the 'Calendar' link.
- Your first assignments:
- Course Logistics WW due Monday 9/10
- Pre-Lecture WW due Tuesday 9/11

